skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mikusheva, Anna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper studies optimal decision rules, including estimators and tests, for weakly identified GMM models. We derive the limit experiment for weakly identified GMM, and propose a theoretically‐motivated class of priors which give rise to quasi‐Bayes decision rules as a limiting case. Together with results in the previous literature, this establishes desirable properties for the quasi‐Bayes approach regardless of model identification status, and we recommend quasi‐Bayes for settings where identification is a concern. We further propose weighted average power‐optimal identification‐robust frequentist tests and confidence sets, and prove a Bernstein‐von Mises‐type result for the quasi‐Bayes posterior under weak identification. 
    more » « less
  2. This paper establishes central limit theorems (CLTs) and proposes how to perform valid inference in factor models. We consider a setting where many counties/regions/assets are observed for many time periods, and when estimation of a global parameter includes aggregation of a cross-section of heterogeneous microparameters estimated separately for each entity. The CLT applies for quantities involving both cross-sectional and time series aggregation, as well as for quadratic forms in time-aggregated errors. This paper studies the conditions when one can consistently estimate the asymptotic variance, and proposes a bootstrap scheme for cases when one cannot. A small simulation study illustrates performance of the asymptotic and bootstrap procedures. The results are useful for making inferences in two-step estimation procedures related to factor models, as well as in other related contexts. Our treatment avoids structural modeling of cross-sectional dependence but imposes time-series independence. 
    more » « less